Functionalization of Block Copolymer Vesicle Surfaces
نویسندگان
چکیده
منابع مشابه
Functionalization of Block Copolymer Vesicle Surfaces
In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biome...
متن کاملDesigning nanostructured block copolymer surfaces to control protein adhesion.
The profile and conformation of proteins that are adsorbed onto a polymeric biomaterial surface have a profound effect on its in vivo performance. Cells and tissue recognize the protein layer rather than directly interact with the surface. The chemistry and morphology of a polymer surface will govern the protein behaviour. So, by controlling the polymer surface, the biocompatibility can be regu...
متن کاملAmphiphilic Block Copolymer Nano-micelles: Effect of Length Ratio of the Hydrophilic Block
Block copolymer nano-micelles are especially important in cancer treatment because of their fine dimensions. In this article, three systems of amphiphilic copolymers with similar lengths and different ratios of the hydrophobic and hydrophilic chains are studied using implicit-solvent coarse-grained molecular dynamics simulations. The factor fphil is defined as the ratio of the number...
متن کاملDensity functional simulation of spontaneous formation of vesicle in block copolymer solutions.
The author carries out numerical simulations of vesicle formation based on the density functional theory for block copolymer solutions. It is shown by solving the time evolution equations for concentrations that a polymer vesicle is spontaneously formed from the homogeneous state. The vesicle formation mechanism obtained by this simulation agrees with the results of other simulations based on t...
متن کاملDoes PNIPAM block really retard the micelle-to-vesicle transition of its copolymer?
The well-known coil-to-globule transition of poly(N-isopropyl acrylamide) (PNIPAM) at its LCST lasts as short as hundred of seconds with fully reversibility. However, for the PNIPAM-containing block copolymers, thermal transformation from micelles to vesicles caused by the conformation transition of PNIPAM took as long as several weeks, even at the temperatures much higher than the LCST, and wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Polymers
سال: 2011
ISSN: 2073-4360
DOI: 10.3390/polym3010252